COMPUTER SCIENCE
TECHNICAL REPORT SERIES

ELECTE
MARG 1981

D

A
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

Approved for public release}

Z 2 .‘Z (‘ (j 2 dintributionunlimitedn -

7
oo\
4)
%E TR~963 v /
f -
: AFOSR-77-3271 October, 1980
L

‘BECONFIGURABLE_QELLULAR‘SOMPUTERS

¢ ' Azriel Rosenfeld
Angela Y. Wu¥*

Computer Vision Laboratory
Computer Science Center

, University of Maryland
? College Park, MD 20742

DTIC

h.LECTE
s MARS 1981 .2

R R

v 3 |
wy The support of the U.S. Air Force Office of Scientific i

Research under Grant AFOSR-77-3271 is gratefully acknowledged,

as is the help of Sally Atkinson in preparing this paper.

Some of the material in this paper is based op Teshnical

Reports 730 (February 1979) and zgg;]ﬁﬁi?’i??q) The authors

' wish to thank Tsvi Dubitzki for his help in formulating some
of the reconfiguration algorithms, and Todd Kushner for his

help in computing expected graph diameters.

£

I R LRI e A L,

* Also with the Department of Mathematics, Statistics, and
Computer Science, American University, Washington, DC.

AIR FORCE OFFICE OF SCIFNTIFIC RESEARCH (AFSC)
NOTICE CF 77 ”‘TlﬁL T UDL

Thig tect: T e revieved and 1g
apprev b o, o - base IAY ANR 190e-l
Disteibut o . Ve lilted, - 2 (7).
A. D. BLULE

lecnniral Intormation Offiger

7 i e 7ML, b Db 11 e T A Y < e o

o SRR AR e s
T

S R - L C e LR TC SIS PRI PLYREY A R ST & S TIPRE ORPEL CONWI V1.4 TRY ¥ (Y72 T KA It iy fomethantd dossd * Los P Lrigd Laag gy ae FIRTRS AT o

TR ey Ry T T T ST TR (ST AT T M py STTRR T FRETRTRLs T ow et
T TR G it bl b ol oo iasantice A it e sl i s it A B

ABSTRACT
When a collection of processors C={P »°**,P) operates

in parallel, it is.desirable that at any given stage of the

computation, each P, should have a task of about the same

size to perform, and each P, should require about the same

amount of information from the other P's in order to perform

its task. To the extent that these conditions are violated,
parallelism is impaired, in thc cense that the P's are not

all used with equal efficiency. 1In cellular computers, e.g.

as they might be used for parallel image processing, these

conditions are maintained by having the P's all perform
similar computations on different parts of the input data, and
by allcwing each P, to receive information from a fixed set

of the others (its™ neighbors'), where these sets are all of

bounded size. This paper discusses, on an abstract level, the

i concept of a reconfigurable cellular computer, in which each

e P, can receive information from a set S, of the other P's,

Loy . afid the S.'s are all of hounded size, bt they need not remain
fixed.thr%ughtout a computation. Requiring the S,'s to have
bounded size implies that most P's cannot communidate directly;

, . the expécted time required for two arbitrary P's to communicate

4 ., depends on:the graph structure defined by the sets S,. The

5 - question of how to change the S,'s in parallel duriné the

course of a comnputation is alsoldiscussed{

¥,
s
:
\E;.

O T I R T T A

(“ &
- —
..——-—”‘—'—-'-‘\ Py k
’ S ot }
1! L ‘
; Yo ,
. e ALY o -
o RN (Gt B)/{\ \J
n_g! g o -1\- ,\E - .j
A LA A \ 1\
| g e Y -
i o e . Ol - T
2 b oegiifientd -
i . e .
P P
,‘ m— -

{l irtr.‘b,w i’

‘. L
S

: }
\ \ . —— ﬁu
‘ 1

~4x

1. Parallelism and cellular computers

Let C={Pl,"',Pn} be a collection of processors operating
in parallel. 1In general, we can regard each Pi as performing
a sequence of computational tasks, and at the end of each task,
providing new information to other P's and requesting new
information from other P's. 1In order to make efficient parallel
use of the P's, we would like all of them to be active as much
of the time as possible. This suggests that we should try to
make the tasks as equal as possible in size, to avoid the need
for some Pi having to wait a long time for a piece of information
that some other Pi is still computing. Moreover, we should
design the tasks so that each P, needs to give about the same
amount of information to other P's, and to receive about the
same amount from other P's, between tasks, to avoid long I/0
delays while some Pi is sending or receiving information.

Ccllular computers [l1-5]) make efficient parallel use of

large numbers of processors by dividing up both the computa-
tional taks and the I/0 requirements very equally among two

P's. On an abstract level, in a cellular automaton [6 -101],

each computational -tep is symbolized by a change in a processor's
state, and the new state depends on the old states of the pro-
cessor and a fixed set of its neighbors; this corresponds to

a task (lookup of the new state) that requires a fixed amount

of new data (the neighbor's states) to be input (and by the

same token, a fixed amount of data to be output: one's own

. .
o - I e A G P o A e PN R TN b o 5 i Akl R b il

Edof otk d ML AL, 0, e L B e € ko RS

TR TR T T TTRE AT T YT e sty
TSR ET T

LT AT, T

state to one's neighbors), and a fixed amount of computation.
The same principles are used in concrete realizations of cellu-

lar computers, as appiied to such tasks as image processing

[1 - 5)]. One can process an image using a square array of

P's, each of which receives a block of image data, with neigh-

boring P's receiving neighboring blocks. The processing is

performed in stages, and at the end of each stage, neighboring

SR T

P's exchange updated information about their blocks for use

5 at the next stage. Thus here again, every Pi does essentially

the same amount of processing and of I/0 from/to neighboring

: . - e ki« e
Sttt s B At T = ol A ramt et

B Vet

g P's, except that the amounts are somewhat less at the borders ! 2
| of the arrav, More general examples could be given in which ; é
the P's are connected to form a fixed graph structure (rather | }

than an array structure), and are used to simulate iateractions j

among the nodes of the graph (see [10]); note that here, too,

[+ __t‘i N

we would want each node to have about the same number of neigh-

pors, to keep their I/0 requirements comparable.

It has usually been assumed, in studying cellular computers,

that the number of "neighboring" P's with which a given Pi can

communicate directly is bounded --i.e., if we represent the P's
by the nodes of a graph, and join neighboring P's by arcs, the
resulting graph has bounded degrce, which does not grow with the
number of P's. This assumption is very reasonable if we regard
neighboring P's as hardwired together; the number of I/C ports
available to a given Pi will be limited, no matter how many P's

there are. But even if we do not assume hardwired connections,

- - ——

! L. N Y,
2 . . : e, A ek s A et A et Dbt A 2 e i A T
& A A AR B s ok a0 TR IYEY Yoty AT © R S A N T vt R B R R R Bt 2R e Tl Tty et el Srptteaac A AR BN A AL A e D ERIP R Uil
A S ECA AT T P SE LI SV L Y SES NETEAR

e

it is still reasonable to require the number of neighbors
of each Pi to be bounded, in order to put a bound on the
amcunt of I/0 that each P, can do at a given stage of the
computation. If we do not impose such a bound, different
P's may require very differeni I/0 delays, since some of them
may need to output or receive much more informatien than others,
so that once again there is danger of serious loss of paral-
lelism.

In conventional cellular computers this graph structure
defining the "neighbor" relations between P's is not only
of bounded degree, but is also assumed to remain fixed in the
course of a computation; this allows us to regard the neigh-
boring P's as hardwired together. 1In this paper, we consider

the possibility of reconfigurable cellular computers in which

the set of neighbors of each Pi can change during the computa-
tion, but their number remains bounded. We do not consider
here how direct communication is physically realized; we simply
assume that each P has a list of "addresses" of those Pi's with
which it can currently communicate directly, and that this lis%
always remains of fixed size. (For the sake of concretenress
[11], we can imagine that P, communicates with Pj by putting
a message addressed to Pj on a very fast bus.) We also assume
that all communication is potentially two-way, i.e., if Pi
can address Pj’ then Pj can address Pi’ and conversely.

When we assume, in a cellular computer, that the nodes are
of bounded degree, we are making it easier to achieve efficient

parallelism, but we are also introducing a potential speed

L N A TN G 5 et b 2ot S e i

ST IR LT I TG T Ty T T T TN T e

limitation due to the time that may now be required for
information to be exchanged between two arbitrary P's.
A given Pi can communicate directly only with a kounded

subset of the P's, namely its neighbors, and if it needs

to communicate with an arbitrary Pj, the message may have
to be relayed through many stages. The expected and worst-

case communication times between a pair of P's depend on the

3 g T AT TR Y X

struc.ure of the graph that defines the neighbor relationship;

examples, for various utandard graph structures, are given in

Seccion 2. Evidently, cellular computers are best suited for
\ tasks in which each Pi needs to communicate, for the most
i part, only with a bounded number of others, and their graph

v structures should be designed so that, to the extent possible,

these others are Pi's neighbors.
In the case of a reconfigurable cellular computer, another
problem arises when we want to change its graph structure

during a computation. If Pi and Pj can currently address one

another, it is easy for them to drop one another from their
address lists by mutual agieement. But if Pi and Pk cannot

currently address one anotker, how do they simultaneously

add each other to their lists? Section 3 proposes a "local"

T AR T - M T e S ¢ 2L i

approach to this problem, in which Pi and Pk can add each

other to their lists only if they currently have a common

R e

neighbor Pj, which they may then simultaneously drop; and
it is shown how, by iterating this "local reconfiguration"

step, direct addressing can be established between any two i

. > g 0z 1o 0580 A e P2 L Tk N
: Diiauite e trratt il il Latzrinter e e G G BTN Aoz o 04 HT Sk 2808,
res aretribiewais otk fie s mbes) el s lama) i) PR R TR TP O LN LAY A RN IR AS IR s

desired P's. In Section 4 we illustrate this approach

by showing how various standard graph structures can be

reconfigured, in parallel, into other standard structures,

while maintaining boundedness of degree throughout.

o i o e

ol ieke

PR

2 e B .

DR

t:..vl—':. [T S

2., AHCUBIIE T R n et h 3 it B TN v s e 1R oA, L2 e ARSI

2. Communication time in cellular computers

Let G be any undirected graph, with set of nodes Ng
and set of arcs Ag. Two nodes P,Q are called neighbors
if (P,Q)€A;. By a path of length m between two nodes
P,Q we mean a sequence of nodes P=Q0,Ql,---,Qm=Q such that

Q. is a neighbor of Q. ;, lsism. We say that G is connected

i
if there is a path between any two nodes of G. We will

usually assume in what follows that G is connected.

By the distance §(P,Q) between P and Q we mean the
shortest length of any path between them. [It is easily
seen that distance is a metric, i.e. reflexive (6(P,Q)=
0 iff P=Q), symmetric [§(P,Q)=8(Q,P) for all P,Q), and
satisfies the triangle inequality (&8(P,R)=3(P,Q)+8(Q,R)
for all P,Q,R,).] The greatest distance between any two
nodes of G is called the diameter of G, denoted A(G),
and the expected distance between two randomly chosen nodes

of G is called the expected diameter of G, denoted E(G).

Let C be a cellular computer with set of processors
{Pl,"°,Pn}, and let A be the set of pairs of processors
that (currently) can directly communicate with each other.
1f we let Ng={Pjp,---,Py} and Ag=A, we obtain an undirected
graph G, called the graph of C. The degree of a node P is
the number of its neighbors, d(P)=|{Q|(P,Q)€Ag}|. We say

that G has degree 4 if d(P)=*d for all P€Ng, where d is as

PR Sty e 6 et saledi s ot bimsaidiad et ¢ e b L el - i s e e e - iy
ik Lk 0 i e o s o b s L g oAt T, an gt ied 3 v e oA

o~

A At i S AL S ARG . L AR e ol Ly L B ks

ot TURES ol D e 2

small as possible. We assume from now on that the graph
of C always has degreesd for some fixed d.

The expected amount of time required for a message to
get from one randomly chosen node to another is proportional
to E(G), and the longest possible time for a message to get
from one node to another is p-oportional to A(G). For a
given number n of nodes, the values of E(G) and A(G) depend
on the graph structure of G. Table 1 shows these values for
a set of basic types of graphs. The derivations of the E(G)

values are given in Appendix A.

Table 1 suggests that we can keep the expected or max-
imum communication time short by using high-dimensional
trees or arrays as graph structures. However, such struc-
tures involve high node degrees, and the higher the degrees
are, the more room there is for differences between the
I/0 requirements of different nodes. We will therefore
consider only the low-degree cases from now on: string
and cycle (degrees2), binary tree (degrees=3), and two-

dimensional array (degree=4).

it o 2 T LS T s+ w0t IV AR T S i LR A B A - DA tavaad R St e e Ll il

PHCRESR SN M

o e st e

. N i L
A T U T PP Y7 o i T eI oo s resas = et - r v s e

Maximum Expected

é._....._...-

§ Graph type egree (d) Diameter (A) diametex (E)

£
L String 2 n-1 (n+l) /3

cycle 2 [n/2] (n+1) /4

Balanced

Qo binary tree 3 2(%-1) %%%;%%[(2~3)n+2£]

%: where R=logz(n+l)

3 Two~-dimensional
array 4 YA 2/n /3

Balanced
k-ary tree k+1 2% ——

where n=(k£+l-1)/(k*1)

k-dimensional K
array 2k k Vn —

3
¥
3

i

]

5N
t
L

4

Table 1. Values of diameter and
expectrd diameter for some simple
types of graphs, all having n nodes

S N R

e i, o = eme e

IR IR S NS &' B < Sk TR I R AR LN R SIS S RT) 2! s il AR 2t siees, b o L AL R & Ak e el =
(RIS RR TN : 23] E H | ¢ X i
ot i v + 7 Yea sl 4 2 At G :

3. Reconfiguration of cellular computers

Suppose that Pi and Pj can currently address one another,
and Pi wants to drop Pj from its address list. Then Pj must
drop P, from its list simultaneously. To insure this, P

! sends Pj a raessage requesting that they drop each other; Pj

acknowledges and agrees to the message; and they then drop
each other. We assume here that such messages are sent and
received in a unit time period, so that the dropping can
take place simultanecusly. Note that when two nodes drop
each other, the graph may become disconnected; we will

o assume that normally this does not happen. (If desired, one

- can check that deletion of an arc will not disconnect the

graph before actually deleting it; see [10].)

It is less obvious how Pi and Pj can add each other to
their lists, if they cannot currently address one another.

Suppose first that P and Pj have a common neighbor P The

K
sequence of events is then as follows: Pi (say) informs

P, that it wants o add P.; P, asks P. to add P.; P. informs
k j k 3 i j

P, that it agrees; P, signals P, to add P. and P. to add P,
k k i J J 1

simultaneously. Here again, standard unit times are assumed,
to insure simultaneity. We have also assumed that Pi and
P, both have room to add each other without exceeding the

4

degree bound. 1If this is not so, we can modify the construc-

e mii | _ et i ol e I Wb i a1

tion to make Pi and Pj drop Pk at the same time they add each

A b gk v T AR o2 AR SR e 2 TEa MR s v, Bt R0 Afs JA e i Lk st AL e g i S e I e meg e dA4T

oAt I I LT VAR T IS B, Rt rad : & R SR VI I L T R T

- other; this insures tha%t their degrees remain within the

bound. Of course, this assumes that there is no objection

3 T T T

to disccnnecting Py from Pi and Pj'

In the case of an arbitrary Pi and Pj' we proceed by

P T

induction on the distance between then. (We assume the

TR T A

graph is connected, so that this distance always exists.)

If the distance is 1, they are already neighbors; if it is

2, they have a common neighbior, and the construction in
the previous paragraph can be used. Let the distance

between them be m>2, and let Pi=Q0,Ql,°'°,Qm=Pj be a

By e e e i e

| shortest path between them. Then Pi=Qo and Qz have the

commor neighbor Q- By the previous paragraph, Pi and Q,

can add each other to their i1ists and (if desired) can

drop Ql from their lists. We now have a path Pi=Q0,Q2," ’

Qm=Pj of length m-1, so that the distance from Pi to Pj

o

is now m-1. Repeating this construction, we can eventually
r:=.e the distance to 2 anc¢. then to °, at which peint P,
anc Pj have become neighbors. As before, we assume that

there is no obstacle to adding and deleting the intermediate

arcs involved i. this construction.

PSR SRR T SR T SRR Y

The construction just given shows orly how to create

s

an arc between two arbitrary given nodes, and assumes that

we are free to create and destroy intermediate arcs as

v

needed. During the »peration of a reconfigurable cellular *i
1

1

- - e———

et L e Sttt i I Bkt b et B v e B kattaiad s s D N A e e T AT ik T e

computer, many pairs of nodes may want to connect or dis-
connect themselves at the same time, and it will not in
general be possible to carry out the necessary reconfigur-
ation steps simultaneously without conflict. To demonstrate
that the concept of reconfiguration is useful, we must show
how graph structures can be nontrivially reconfigured in
parallel., 1In Section 4 we will sketch several such recon-
figuration algorithms which allow conflict-free parallel
transformations between strings, cycles, arrays, and trees.
We will generally assume in these algorithms, as is commonly
assumed for graph-structured cellular automata, that the

graph has a distinguished node.

3.

Dt st s T Are e S itk 3 K

Rl e e daat . b n

= s

A

i
i
:
:
;
ke

. he g g N
i Bl A AR g e

4. Some parallel reconfiguration algorithms

4.1 Strings and cycles

It is trivial for a cycle to transform itself into a
string by dropping an arc, e.g. one of the arcs incident
on the distinguished node. Conversely, for a string to
transform itself into a cycle, the node at one end (which
we may assume to be distinguished) succesively connects
itself to the third, fouarth,...nodes, using the path-
shortening construction in Section 3, until it is connected
to the other end; each intermediate arc used in this con-
struction is deleted as soon as the next arc is formed. The
time required to form a string into a cycle is proportional
to the length of the stiring.

4.2 String to tree

For a string, say of length £, to transform itself into
a balanced binary tree, a construction similar to that used
for firing squad synchronization can be employed. The mid-

point M, of the string (or one of the two midpoints, if £ is

0

even) is identified by sending two signals from the (distin-
guished) end node, one at unit speed and one at 1/3 speed;
the unit speed signal bounces back from the other end and

meets the 1/3 signal at M Next, we similarly find mid-

0.
points Ml and M2 of the two halves of the string, and at

D ; et - . ‘ . . R REY
r Eab e LA W T of L B A e TN Kl e o S S sk e B A i L T s b Pt £y s e paed i b il it ity cn gl LR <.

P o

the same time, we connect M. to each of them; M_ is the

4 0
¢ root of the tree being constructed, and M

0

1,M2 are its sons.

We now have two substrings with midpoints Ml’MZ and we

repeat this process in parallel for each of them, thus

joining Ml to the midpoints Mll,M of its halves, and

12’

M of its halves. After log2£

\ 2 21'M22
repetitions of this procedure, we have constructed the

to the midpoints M

tree. The total time required for the construction is

3. 323 4% 3 .
about 7£+7°'3+3'32+..+4+% <34, proportional to £.

4.3 Tree to string

Given a binary tree, we can reconfigure it into a

string in time proportional to the height of the tree.
We do this by repeatedly, in parallel, joining each node

to the right son of its left son and the left son of its 1

right son, and disconnecting it from its left and right

sons, where "left" and "right" refer to aa arbitrary

given labeling of the sonwi of each node. Figure 1 illus-

———
.

trates how this process works in a simple example. It is

not hard to see that when the process terminates, each
node is joined to Zhe rightmost descendant of its left
son and the leftmost descendant of its right son, and
the resulting arcs define a string which corresponds to
an inorder traversal of the tree.

4.4 String to array

We assume that each node knows the length £ of the

gtring ancé its own position in the string. Let s = [/Z1,

-8 R 2 et DI A T e 0 LA L TR R LA MR AN A b A R EL LT SR S L VAT A L O GRS ik SRRPO RAPL T OF k1 S

I RIS AT AR G e A e T T e T A T

A

Reconfiguring a tree into a string

fo

(a)

(b}

(c)
Figure 1.

and regard the string as composed of substrings of length

th node of each substring to the ith node

s. We join the i
of the following substring, 1 = is s, and disconnect the
last node of each substring from the first node of the
following one. Evidently, all these joinings can take
place in parallel. [We do this as follows: Assume that
nodes nos. 1, 1+2s.... are specially marked. Each marked
node ks+i joins itself to the next marked node, using the
st.epwise construction of Section 3. As soon as this pro-
cess has passed node ks+i, it too starts a reconstruction
process, which stops as soon as it finds a node that still
has only two neighbors and occurs after a marked node;

this can only be node {k+l)s+i.] The substrings can be
regarded as the rows of an array, and the new arcs connect
the successive nodes in each column. If £ is not a perfect

square, the last row will be shorter than the others. Evi-

dently, the joining process takes time proportional to vI.

4.5 Array to tree or string

To change an array into a string, we can simply build a
breadth-first spanning tree of the arvay with one of the
corner nodes as root; readily, this tree is binary and can
be constructed in such a way that it has height equal to
the array's city block diameter. The construction of Sec-
tion 4.3 can then be used to convert the tree into a string.

The process takes time proportional to the array diameter.

e ot R s L s R A S D At L N 00 e T N e Tl e sl el ST, 2, A2

- o il il sttt T - Y hand Ry — v Ty T e e e e oAy U e

o T

v TRy T

s L

e T T

TS I L i s et ha il SRR e A
T B A e Ry AT §T— i &6 g

For the details of a tree construction process that yields
a tree of the desired height that is as halanced as possi-

ble, see Appendix B.

4.6 Tree to array

A binary tree can be converted into an array by first
changing it into a ctring (Section 4.3) and then changing
the string into an array (Section 4.4); but the latter pro-
cess takes ofstring length) time. A more complicated
cornstruction can be given which requires only O{(array dia-
meter) time; for the details, see Appendix B. It would

be of interest to design an algorithm tnat requires only

O(tree uieight) time.

. bt il O e ity

R SRV T S

USRI SN P VR

*"T
]
b
+

q
Tp
[
8
R
l.r:'

5. Concluding remarks

This paper has suggested that it may be of interest

to study reconfigurable cellular computers, in which the

number of processors that can address a given one is bound-
ed, but the set of these processors can change, thus modi-
fying the graph structure defined by the addressability
relation. Examples were given illustrating how various

i sinple graph structures can be reconfigured into one
another in parallel.

Ordinary cellular computers are applicable to compu-

tational tasks which can be divided among the processors

in such a way that only certain pairs of processors need
to interact; one would then define the graph structure of

the computer so as t» make these pairs neighbors. More

generally, one could imagine a computational task in which,
at various stages, different kinds of interprocessor inter-
actions are needed. Juch a task could be handled by a

reconfigurable cellular computer which changed its graph

structure at the end of each stage.

i . A el

As an example of such a multistage task, let us again

consider the domain of image processing. We know that an

A = Taaiet

array-structured cellular computer is useful at an early

PORSIC

stage of image analysis, when local operations are being
performed on the image. The result of this stage might be

a segmentation of the image into regions, and we might then

[RNPIFICY F PRI SRR

want to perform further processing at the region level, e.qg.

PRI A AP TR S NNt b Ml sl Sefunn ttan dathoent wdt s gt webarme it L S A Sl e et Lot b ot Y R Vit

merging regions, or identifying particular configurations

; of regions by matching against models. This level of pro-~

: cessing might be best carried out on a cellular computer
configured in such a way that each node represents a region,
and neighboring nodes represent adjacent regions. It is

not difficult to define reccnfiguration algorithms which,
given an array-structured cellular processor in which region
labels have been attached to the nodes, can construct a
graph-structed cellular processor representing the adjacency
f graph of the regions. A paper describing such algorithms

is in preparation [12~14].

Appendix A: Expected Diameters

¢ l) Cycle
o In a cycle of odd length n, the sum of the distances

{ from any given node to the other nodes is

iy) (n-1)/2 2_
" 27, i=01
i=1

Hence the average distance from an arbitrary node to any

TS WAL AT 3OS

other node is the sum divided by n-1, or (n+l)/4. 1If n is

even, the sum is

n (n72)/2

i=1 4

el e e S T

: ! so that the averaae is n2(4(n—l). Note that if we include

3 the given node itself (distance=0) in the average, the deno-

minator is n rather than n-l, so that we obtain n/4 in the
even case, and (n%®-1)/4n in the odd case.

2) Array

In an rxs rectangle, the sum of the distances from any ;

2 St W a2

of the corner nodes to the other nodes is

rs(r-1)

3 +

= rs(r+s=-2)/2

I (i+)) = £sls-d)
J

[}
o

Hence in a UxV rectangle, we can find the sum of the distances

from a given node (u,v) to the other nodes by regarding (u,v) !

and three of its neighbors as the corners of four subrectangles: é

A AN R A ettt ShuRE e A et R

R . . R
2

.1. sfu,v) (u+l,v). . .
e o «(u,v=1)(u+l,v-1). . .

R . . R
3 4

. v

Now a node in R2 or R3 has distance from (u,v) 1 greater than
its distance from its own corner, while a node in R“ has dis-
tance 2 greater. Hence the sum of the distances from (u,v)
is the sum of the distances (+ 1 or 2) from the nodes of RI,
Rz, Rs, R“ to their respective corners. Since the sizes of
Rl, Rz' Ra, R“ are uxv, (U-u)xv, ux(V-v), and (U=-u)x(V=-v),
respectively, the sum is

uv (u+v=2) + (U-u)v[l+ig:2%i!:3]
2

u+t (V-v)~2
2

(U-u)+(V-v)-2]
2

+ u(v-v)[1l+] + (U=u) (V=-v) [2+

which evaluates to

UvZ+Vu?-U (V+1) v-V (U+1)u + SUV (U+V+2)
and the average distance is this divided by UV-1., To obtain
the average distance between a pair of arbitrary (distinct)

nodes, we must average this result over (u,v), i.e. by taking

U v
1l z z of it. Now applying this to v? yields (V+1) (2V+1l)/6;
UV u=1 v=1

to u?, (U+l) (2U+1)/6; to v, (V+1l)/2: and to u, (U+l)/2. Hence

our final average is

1
m[u(vu) (2v+1) /6 + V(U+1l) (2U+1)/6

~ U(V+1)2/2 - V(U+1)2 + UV (U+V+2)/2]

which evaluates to (U+V)/3. In particular, for a square
array of n nodes we have U=V=y/n , so that the average is
2/5{3; and for a string of n nodes we have U=n, V=1, so

that the average is (n+l)/3.

3) Tree

A complete binary tree T of height h has 1,2,...,2h_l

nodes at levels 0,1,...,h-1, respectively. For a node N at
3 level k, the sum of the distances to the other nodes caii be
computed as follows: Let N be at distance d from the root
of a subtree T'of height r which does not contain N. Thus
N is at distance d+1 from 2 nodes of T', d+2 from 4 nodes,

! «es, and d+r-1 from Zr-l nodes. The sum of the distances

PPy YT TR LT TR T

from N to the nodes of T' is thus

L d + 2(d+l) + 22(d+2) + ... + 25 1 (Q+r-1)

3 r-1

d(25-1) + ¢ i2' = q(2¥-1)+(r-2)2%+2 = (d+r-2)2% - (4-2).
i=1

Let N be at level k; then we can decompose T into subtrees

as follows:

4 Sum of distances]
Distance™ from r from N to nodes '

Root of T' root of T' to N Height™ of T' of T' ¥

N's brother 2 h-k (h-k) 2% ¥

N's father's ;

brother 3 h-k+1 (h-k+2) 20 K+1_; |

N's grand-

father's bro-

ther 4 h-k+2 (h-k+4)207K*2_,

TSR ST TR NPIEPaT Y SRIFTT WP S PP

The brothe.: of
N's 7 testor
just oelow the

root of T k+1 h-1 (h+k-2)2P"1 - (x-1)

P O,

L N aa i L

TamiAohin:

~

ppa———
— - ——

4 I T AT N T P TT)
e T el R A ke AT T R et I 1Y A ¢ ey e
" * gttt B T I T T TRtV TV T e IS (TR VP LI JEL LU WL i
L Clanes 2 b o) LR A A e U s z xad e S i EURLTL

e g e N 31,

if-':—t"’::i,ﬂﬁﬂ:»!—'r:"—!
HH

In fact, T consists of these subtrees together with N's
tather, grandfather, ..., and the root of T, which have dis-
tances 1,2,...,k from N, . hence sum of distances k(k+1l)/2;
and the subtree rooted at N itself, which has sum of distan-
ces (h-k-2)2""% 4 2 from N. The contributic: to the sum

from the subirees in the table is

K, _. k-l Ces k-l
(h-k)22P71 + ¢ T(21)2R7KT _ gy
i=1 i=1 i=1

h-k ,k h-k+1

= (h-k)2 (27-1) + 2 ((k—2)2k+2) - k(k-1)/2

The total sum of distances for a node N at level k is thus

(h-k-2)2""K 4+ 2 4 (h-k) 2P (2Ke1) + DKL (ko2 2Ri2) 4k
= (k-2)20%1 4 (neky2P 4 PRl Lk 4 2
= 2P (hek-4y 420K L 42

and the average distance is this divided by 2h-2 (nodes #N).

To get the average distance between two arbitrary nodes, we
take a weighted average of these sums, with weights Zk (rep-
resenting the Zk nodes at level k, k=0,1,...,h~1), and denomi-

h
nator 27-1 (the total number of nodes in T). This yields

h-1 h-1 h-1 ;

l ’

— 5 L2 h-a)42)r 2%+ (2Ma1yr k2K 4 p 2Bt |

(27-1) (28-2) k=0 k=0 k=0 ‘
1 |

B L2 (n-4)+2) (2P-1) + (2P41) ((h-2)2P42) + n2P*L

(27-1) (2P-2)

For a tree having n nodes, we have n=2h-l, so that this may be

written as

2(n+l) ., . 2
a1y L 0m3) (a+ D)+ (n3)] = 288 1 (h3)n + 2m)

where h = logz(n+l).

et b i el Lr A b St e L ek M et S A e iy SO ATIAL s A S e 0 g L ek b T LR s

Appendix B: Array/Tree and Tree/Array Reconfiguration*

.

k2

In Section 4 we outlined a number of algorithms for

-3 PR

parallel reconfiguration of one graph into another; but
. some of these algorithms were not the fastest possible

or did not yield the best possible results (see Sections

4.5 and 4.6). The purpose of this appendix is to show how
improvements can be achieved by using algorithms that are

somewhat more complicated. Thus the appendix serves to

ARG TS RS T R

illustrate that straightforward reconfiguration algorithms

-

may not always be the best ones.

T

it e R T A S L il B Kt e Tt o e a3

*The algorithms in this Appendix were developed with the help
of Tsvi Dubitzki.

Y Y A g P YR IS PP

ERWEY R ANTLRS PR IS RE

%
!
t
1
1
i
4
{
{
]
Li
1
1
}

Rt

A R iree

28

Algorithr B.1l: Reconfiquring a two-dimensional array into a

% minimum-height binary tree.
& Let A be a rectangular array of automata which

contains N nodes where N = r-s (rss) for integers r,s. D is

the node at the northwest corner of A.

The basic steps of the algorithm are:

(1) Send a signal down from D along the leftmost vertical

g Ten B

line. Upon receipt of this signal, each node below D along

the vertical line sends & signal to erase the series of hori-

zontal arcs emanating from it in A. This gives us an unbalanced

e

binary tree with height at most r + s. We can view

this tree as composed of one horizontal string of length s
and s vertical strings of length r - 1., (The distinctions

between left, right up and down connections at each node are

known in A.)

(2) D sends a signal to order each string to turn into
a balanced binary tree as described in Section 4.2. This takes)
at most O(s) time. We now have r + 1 binary trees: one with

height O(ilog s|) and s with height O((loy (r-1)J). 1In the

above process the tree arcs are marked.

vt

(3) Define the tree with s nodes as the "horizontal" tree

o A

T and the t trees with (r-1) nodes as "vertical" trees. We

will hang the "vertical" trees on the leaves of tne horizontal

e FL. R

tree T. This is done as follows:

B LAt . A S v L 2

NS

| WRATamR A
TS AN

|
|

|
L

iy e s e 47T TITEY Y Oy

D sends a horizontal triggering signal through
all the nodes of the tree T in A, Upon arrival at a node i
(including D itself) the signal causes node i to check how
many marked arcs of the tree are connected to it. If that
number is 1 or 2 (except the root of T which is marked and
considered as a node with 3 tree arcs) it means that respec-
tively 2 or 1 of the "vertical" trees can b2 hung on node i
in T. Then node i sends (ahead of the triggering signal) a
searching signal for 2 or 1 roots of "vertical" trees either
through the node below it in A or to the right, checking at
each node whether the “"vertical" tree below it, in A, is still
connected to it., If it is still connected, then it can be
assigned to node i of T, i.e. node . connects itself to the
roots of its assigned trees and the arcs of A connecting these
"vertical" trees to the upper horizontal line or A are dis-
connected. All the new connecting arcs to the roots of the
"vertical" trees are marked as tree arcs. The horizontal
triggering signal continues to the right one time unit after
the searching signal . starts, in order to avoid too many temporary
connections at any node of T. In case the above searching sig-
nal, starting at node i, does not find enough needed unassigned
"vertical® trees to its right, it bounces back to the left in
the upper horizontal line of A to look for unassigned "vertical"”
rees left by the previous searching signals. This is not done

when i is the rightmost node in A's top line.

e e

—— T T

AT TR Y T
TR I A A TS

(4) All the unmarked arcs (of A) are erased by a bLccadth
first search signal from D sent down the spanning tree of A,
In the following a leaf is defined to be a node which

does not have two sons in T and is said to have one or two

null links.

Claim 2.1.1: There are enough null links at the leaves of T

to hang all the "vertical" trees in A.

Proof: There are s nodes in T. By inductioﬂ the number of
null links in a binary tree with s nodes is s + 1. On the
other hand there are only s "vertical" trees in A.

Corollary: If the rightmost node in A's top line finds under
it one unassigned tree to be hung on it, then it doesn't bounce
a signal back along A's top line since Claim 2.1.1 proves that

there is one less "vertical" tree in A than needed to fill

all the null links.

Claim 2,1.2: The height of the combined tree formed from T

and the tree hanging from it is at most one unit more than the
height of a balanced binary tree formed from a string of

N = s.r nodes.

Proof: The height of a balanced binary tree with N nodes is

h = llogzNj. The total height of the combined tree constructed
by Algorithm 2.1 will be

H =1+ llog,s] + Llog,(r-1)J) = 1+|log,si+llog,r] = l+L10g N}

so that H s h + 1,

T o Ll ST i

e o RO 3 Bt P Ll 2T

s e g teganin i
. : g o K nr B M
. M et ki o
B PRSIy bR]G

‘i T T T P N P WU SN AT
AR TYRS TR 1t 2 St N et n bt e e b ST B I LA T a

|
!
i
i
{

Claim 2.1.3: Algorithm 2.1 takes O(s) time.

Proof: Step (1) of disconnecting the horizontal lines in A

takes O(a+r) time.
Step (2) of converting all the strings into binary trees

takes O(s) time.

Step (3) of converting the binary trees into one tree

takes O(s) time.

Step (4) of erasing nontree arcs takes O{s+r) time.

Neadiead UG XMTAD G Sl 2t Th b sh el

e ST A Drtan

P

[

Algorithm B.2: Reconfiguring a complete binary tree into a

two-dimensional array.

Let T be a complete binary tree of automata with N nodes.
Let D be the root of T. By a complete tree we mean a tree
in which all the paths from the root to the leaves are of the
same length. In the following a leaf node of T is a node
with two null links.

The basic steps of the algorithm are:

(1) Conversion into a tree >f strings:

In parallel D sends two signals down T, one at unit speed
and the other at 1/3 speed. The uni; speed signal bounces
back from the leaves of T and meets the 1/3 speed signal at a
node in the middle of each path from D to the leaves of T,

Zach such meeting node marks itself and turns the
subtree rooted at it into a striny as described in Section 4.3.
The unit speed signals continue up to D and make it convert the

binary tree rooted at it and having as leaves the marked nodes

into a string also. We thus obtain a horizontal string (the

last one) with two folded strings hanging from every other
node of it, since in converting a binary tree into

a string as described in Section 4.3, every two leaf nodes are
separated by a nonleaf node, and the above twofold strings

hang only on leaf nodes. D knows that the process of turning

the specified subtrees into strings has terminated as soon as

it receives {from its two sons in T) the string generating ;

signals which bounced back from T's leaves. All the arcs

of T not participating in the above construction are erased
as follows: D send breadth first erasing signals down in T.
The signals bounce back from the leaves towards D and on
their way back erase every arc of T except the first level of

arcs above the leaves and above the marked nodes.

(2) Formation of a pseudo-array:

D orders every hanging point (in the horizontal string
of (1)) of a twofold string to order the first nnde in the
right part of the twofold string hanging from it to connect
itself to the node to its right and then disconnect itself from
its o0ld hanging point. The rightmost node of the horizontal
string doesn't have a nonleaf node to its right and therefore
orders its right neighbor in the twofold string hanging from
it to be a new hanging point to its right (thus part of the
horizontal string) from which hangs the rest of the right part
of that rightmost twofold string. We now have a
binary tree composed of a set of strings hanging vertically
from a horizontal string. This binary tree is a "pseudo-array"”
and we need only generate the horizontal connections in it in
order to get an array. Note that the rightmost hanging string

is one node shorter than the other hanging strings.

(3) Conversion into an array:

First we define for each node in the pseudo-array of step

(2) what its upward,downward and horizontal connections are.

AT e s

' Hetandh i I LY G Y Fee i L e i ot S athet i
ua 3N JARAM AL e oot o tsditetesdaads e bt du 5 il 4 ytst Hlath

For this purpose D sends a breadth-first search signal down
the pseudo-array. The signals bounce back froy the bottom
nodes of the vertical strings and go back up in

the strings of the pseuvdo-array. Each ent-ance to a node

in this path is a downward connection and each exit an upward
connection. Upon arriving at the marked nodes of step (1)

the definitions of the connections change to horizontal until
the signals reach D again. Each node in the horizontal line
will not emit a signal in the horizontal direction towards D
until it has received a horizontal signal. Thus upon receiving
two signals D will know that this marking process has termi-
nated. At this stage D orders each of its horizontal neighbors
to connect itself temporarily to the node on its downward con-
nection. Then each of the horizontal neighbors of D

orders its vertical neighbors and the node below D to connect
themselves. The above temporary connections are then discor-
nected. In turn each horizontal neighbor of D starts such a
connecting process too. This process propagates in the first
upper row of the pseudo-array; at the same time each node
below that row, having established a horizontal arc, starts
such a process in the row below it, and so on until the net-
work of horizontal arcs in D is completed.

Claim 2.2.1l: The length of the string formed from the upper

part of T (the upper row of the final array) is O(/N).

AT e N R T S

A e LT e

Proof: The number of nodes in T is N which equals 2P _

in a complete binary tree with height h. The marked nodes in
step (1) of Algorithm 2,2 divide T into an upper complete tree
with height h/2 and the rest of T. 1In that upper part of T

. oh/2+1

we have N' - 1 nodes. Therefore N' is O(V/N).

Claim 2.2.2: Each hanging point in the pseudo-array of

step (2) of Algorithm 2.2 is the middle of the twofold string
hanging from it and the lengths of all the twofold strings in
the pseudo-array are equal.

Proof: A complete binary tree has equal numbers of nodes in
the right subtree and left subtree of its root. The subtrees
forming the twofold strings in step (1) of Algorsithm 2.2 are
complete binary trees. The process of converting a binary
tree into a string produces a stiing in which the root of

the tree is an internal point, all the nodes to its right come
from the right subtree of the root and all the nodes to itﬁ
left come from its left subtree. Thus the root of the tree

(a hanging point) is the middle of the twofold string. The
lengths of all the twofold strings in the pseudo-array are equal
since all the marked nodes of step (1) are at the same depth
below D and hence a'l the subtrees below them are of the same
size.

Corollary: The array formed in step (3) of Algorithm 2.2 is
of size O(YN) x O(VN). This is due to the fact that the upper

horizontal line of the array contains O(YN) nodes by Claim 2.2.1

B S P

TR
.

and the lengths of all the vertical strings h=nging from the

T

horizontal line of step (2) are equal by Claim 2.2.2.

e T RTe

Note that Algorithm 2.2 is applicable with slight changes

to non-complete balanced binary trees. 1In particular if we

are dealing with height-balanced binary trees with minimal

TG

numbers of nodes, then the upper horizontal line of the array

holds less than VN nodes since the marked nodes of step (1)

(clusest to the root) are now closer to D than in the case of

a complete binary tree kecause of the existence of short

VTR TR

paths going through a node to the leaves of T. Also the

difference in length between the vertical hanging strings

grows with N since we are dealing with subtrees (generating the

R CE TR T R T
T T TR Y

twofold strings) which differ more and more in their numbers
of nodes as the height of T grows. These factors give us

finally very incomplete rectangular arrays.

Claim 2.2.3: Algorithm 2.2 takes O(YN) time.

Proof: Step (1) of constructing the tr . of stringz takes
O(log N) time. Step (2) of constructing the pseudo-

array takes congiant time., Step (3) of forming the horizon-~
tal lines of the array takes O(/N) time since we already have

a skeleton of an array of size O(/N) x O(/N).

e e B) e s S S« et s AL it I i sl L. AL _ o . » et i

iz,
o L e . ke ANt B 6 A P i 3

- —

C it e e Rt el . : - i e L A e e o) Bat ki A L
TR T AL R VPR RN R ST P PL LT EINTIL N VTR SNIRTRT T Sl S Em i T A X LAE T LI WS S OO I i UM BRI TR J N i 1A cota S o irg ey bl T Lo N AR e o b

H LIS TR YETR S TS T T s TR TIIT ,
IS

References

1. S. H. Unger, A computer oriented toward spatial problems,
Proc. IRE 46, 1958, 1744-1750.

2. B.J. McCormick, The Illinois pattern recognition computer-
ILLIAC III, IEEE Trans, EC-12, 1963, 791-813.

3. M.J.B. Duff and D.J. Watson, The cellular logic array
processor, Computer J. 20. 1977, 68-72,

4. K.E. Batcher, Design of a massively parallel processor,
IEEE Trans. C-29, 1980, 836-840.

5. P. Marks, Low level vision using an array processor, Computer
Graphics Image Processing, 1980, in press.

6. A.R. Smith III, Cellular automata and formal languages,
Proc. 1llth SWAT, 1970, 216-224.

7. A.R. Smith III, Two-dimensional formal languages and pattern
recognition by cellular automata, Proc. 1l2th SWAT,1971,144-152.

8. S.R. Kosaraju, On some open problems in the theory of cell-
ular automata, IEEE Trans. C-23, 1974, 561-565.

9.

A. Rosenfeld, Picture Languages, Academic Press, NY, 1979,

A. Wu and A. Rosenfeld, Cellular graph automata (I and II),
Info. Control 42, 1979, 305-329, 330-353.

C. Rieger, ZMOB: A mob of 256 cooperative Z80A-based micro-

computers, Proc. DARPA Image Understanding Workshop, November
1979, 25-30.

A. Wu and A. Rosenfeld, Local reconfiguration of networks
of processors, TR-730, Computer Vision Laboratory, Computer
Science Center, University of Maryland, College Park,
Maryland 20742, February 1979.

T. Dubitzki, A, Wu, and A. Rosenfeld, Local reconfiguration
of networks of processors: arrays, trees, and graphs, TR-
790, Computer Vision Laboratory, Computer Science Center,

University of Maryland, College Park, Maryland 20742,July
1979 .

A. Rosenfeld and A. Wu, Cellular computers for region-level
image processing and analysis, in preparation.

- . T T P S S . 158 5 st AL bR ik et era A A S e e L i i

T T TP

i U

R e

JRRN=IeT]

el e A

ki Ak

B T T T R T T e s T T AT T TR T T s

© SECURITY CLASTFICALION OF THIS PAGE (When Dais Eniersd)

i AP S e

UNCLASSIFIED

B T

e

Cra = |

e

EPORT DOCUMENTATION PAGE

STRUCTIONS
BEFORE COMPLETING FORM

e _+41. GOVT ACCHSSION NO[3. RECIPIENT'S CATALOG NUMBER

W

-~ =
.’;' —

b RECONFIGURABLE CELLULAR COMPUTERS . /
b -
= T

7. AUTHOR(e)

o | reriel Rosenterd)

— Ange;a ¥f1Wu

./" /z.;-
&\;WJT/

(‘ro-.wvnc OF REFORT & PENIQO COVEKED

9 Techniqg{wree,:

* ZRFORMING CRG, REPORT NUMBER
TR~963

‘s TONTRACY OR GRANT NUMBER(s)

, e . JUPNPEUEEEE -,
/AFOSR—77-3271 \

9. PERFORMING ORQAWZQTIO'N NAME AND ADDRESS
Computer Vision Laboratory, Computer

Science Center, University of Maryland,
College Park, MD 20742

s

10. PROGARAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

ats A3ov/AZ

11, CONTROLLING OFFICE NAME AND ADORESS

Bolling AFB
Wash., DC 20332

13:" NUMBER OF PAGES
35

Math. & Info. Sciences, AFOSR/NM </'/’ Octohn.-i‘%ﬁ ;

Ti, MONITORING AGENCY NAME 8 ADDRESS(If diiferent from Controlling Office)

18, SECURITY CL ASS. (of this report)

Unclassified

18s. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

s ——

e

N |
(11 ¢se-7R-9473

17. DISTRIBUTION STA

(of the abstract entered in Block 20, i{ dilferent from Report)

18. SUPPLEMENTARY NOTES

Cellular computers
Parallel processing
Reconfiguration
Cellular graph automata

19. KEY WORDS (Continue o reverae side |l necessary and identily by block number)

it is desirable that at any given st&age
P, should need to obtain about the same

the sense that the P's are not all used

ffom the other P's in order to perform its task.
that these conditions are violated, parallelism is impaired, in

0. ABSTRACT (Continue on reverse side !l necesaary snd identil; by block number)
When a collection of processors C={P,, -

of Bhe computation, each
amount of information
To the extent

with equal efficiency.

;n « -llular computers, e.g. as they might be used for parallel
imi, e processing, these conditions are maintained by having

-,P_} operates in parallel

DD , %' 1473

EDITION OF 1 NOV <% 13 oBsOLET,

, UNC

LA:SIFIED

- N A
6(O 3 OJ 8 SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

fdiils e AL A A IS srafr TS bl M 0l w A et dal e e Bl Lo AN

£,
e
{l

.)_<

UNCLASSIFIED

SECUNITY CLASBIFICATION OF THIS PAQE(When Data Kntered)

the P's all perform similar computations on different parts
of the input data, and by allowing each P, to receive
information from a fixed set of the other} (its "neighbors"),
where these sets are all of bounded size. This paper
discusses, on an abstract level, the concept of a recon-
figurable cellular computer, in which each P, can receive
information from a set S, of the other P' , a&nd the S.'s

are all of bounded size,lbut they need no¥ remain fix&d
throughout a computation. Requiring the S;'s to have
bounded size implies that most P's cannot communicate
directly; the expected time required for two arbitrary P's
to communicate depends on the graph structure defined by the
sets S;. The question of how to change the S;'s in parallel
during the course of a computation is also discussed.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Nion i sl § b o e £ e T et € BN ¢ e 28 A [o Sk el o

